University of Texas MD Anderson Cancer Center

Houston, Texas
Professor, Neuro-Oncology and Margaret and Ben Love Chair of Clinical Cancer Care, University of Texas MD Anderson Cancer Center
Member, Moon Shots Program™ Executive Committee

Research

For years, Dr. Yung and his team have been studying treatment options for patients with Glioblastoma multiforme (GBM) –the most deadly type of brain cancer – with an average 18-month lifespan after diagnosis. Dr. Yung is focused on drugs that target a gene called PI3K, which is a key factor in about 30% of GBM cases. His team collected glioma stem cells (GSCs) from GBM patients and developed a special panel of cell lines to investigate patterns of resistance to P13K inhibitors. The researchers are figuring out the molecular profile of these GSCs to identify potential targets for drug development. Results from the P13K studies have shown that the molecular profile of GSCs contain increased levels of Wee-1, which is a protein that controls cell division and growth. Following these results, the team then combined a P13K inhibitor with a Wee-1 inhibitor and found there was a greater inhibition of cell growth and the cancer cells were induced into cell suicide. Plus, when they tested the same inhibitors on complex GBM tumor models, they discovered similar benefits. These findings reveal molecular targets and designs for combination therapies that could lead to new treatments for GBM patients.

Earlier in his career, Dr. Yung led the study that paved the way for FDA approval of temozolomide (Temodar®) for GBM and led the registration study that preceded FDA approval of the drug bevacizumab (Avastin®) for recurrent GBM.

Bio

W.K. Alfred Yung, M.D, earned his undergraduate degree from the University of Minnesota and attended medical school at the University of Chicago. He conducted his internship and residency training at the University of California, San Diego, his chief residency at Cornell University and his fellowship at Memorial Sloan Kettering Cancer Center. Dr. Yung decided to make medical research the focus of his career because he was frustrated by the lack of treatment options for brain cancer patients, and he was recruited to help build the neuro-oncology department at the MD Anderson Cancer Center, where he has worked for 35 years.

His many roles at MD Anderson have included deputy chair of Neuro-Oncology and medical director of the Neuro and Supportive Care Center. In 2001, he was co-director of the Brain Tumor Center, which he helped expand. He led the department of Neuro- Oncology  for 16 years, as ad interim chair from 1999-2002 and as chair from 2003-2015.

In addition to his fellowship with NFCR, Dr. Yung’s work has been advanced by 30 years of continuous funding by the National Cancer Institute. He has been co-chair of the NCI Brain Malignancy Steering Committee since 2011 and is the Special Advisor to the CEO of the National Brain Tumor Society. Dr. Yung was also named to the Blue Ribbon Panel of experts advising the Nation Cancer Moonshot Initiative, which is led by former Vice President Joe Biden.

Dr. Yung is also on the Executive Committee of GBM AGILE, which is a revolutionary global collaboration to test and develop new brain cancer treatments that NFCR has taken a leading role on.

Throughout his career, Dr. Yung has been published in more than 300 peer-reviewed journals and he served as editor-in-chief of Neuro-Oncology from 2007-2014.

In 1999, Dr. Yung was diagnosed with bladder cancer and underwent chemotherapy for five months, followed by an extensive surgery to remove the cancer cells. He is now in complete pathological remission and says, “I chose to continue with my passion that I had before my cancer diagnosis and, in fact, hurry things along a bit more, recognizing I don’t know how much time I’m given. So, I treasure every moment of time and keep moving forward with energy and gratitude.”

Areas of Focus

Cancer Types

Years of NFCR Funding

2014 – 2016

Related Content

NFCR In the News: Addressing Deadly Brain Cancer, GBM

Detecting Skin Cancer with Artificial Intelligence and Other Game-Changing Technologies in Cancer

Cases of skin cancer are skyrocketing. In the past three decades, more people have been diagnosed with some form of skin cancer than all other cancers combined. Because of this, researchers worldwide have been fascinated with figuring out how to better detect and treat skin cancer. The fascination has launched some of the world’s brightest scientists into innovation overdrive. The result? Artificial Intelligence to detect skin cancer.  Artificial Intelligence and Cancer Artificial Intelligence (AI) involves teaching technology to do tasks previously done by humans. It can be an Alexa device telling a joke, Google Home turning the lights on or off, or something more complex like analyzing medical data. Typically, information like X-Rays or CT scans would be read, reviewed, and analyzed by medical teams to identify abnormalities. Today, AI is used to quickly translate an image into data, compare that data against a more extensive set of normal and abnormal images, and produce a quantitative assessment of potential abnormalities. This method not only reduces the chance of human error but speeds up the process tenfold. Fewer errors and quicker diagnoses mean a far better chance of treating cancer in an early stage.  Innovative Cancer Technologies While the use of AI feels exceptionally futuristic, innovative technology has been emerging from the cancer field for years. In 2017, the U.S. Food and Drug Administration approved a bright pink liquid known as 5-ALA for brain cancer treatment. This drink, often referred to as ‘pink drink,’ is a surgical intervention drug given to brain cancer patients ahead of their surgeries. The pink drink makes brain tumor cells illuminate a hot pink color under fluorescent light when paired with the right technology.  Previous treatment for brain cancer was resection of the tumor. However, physicians alone were historically insufficient or incompletely identified tumor tissue during surgery, which led to recurrence and the abysmal survival rate of 1-2 years on average. Aided by the brilliant pink hues induced by 5-ALA, doctors can now remove and identify significantly more of the tumor.  In 2020, an NFCR funded team of renowned researchers explored how technology could improve treatment outcomes for patients with T-cell non-Hodgkin’s lymphoma. Before this study, professionals agreed that a molecule called fenretinide would, in theory, be able to treat non-Hodgkin’s lymphoma. However, it was seemingly impossible to deliver this molecule to cancer cells because it is poorly soluble in water. The NFCR-funded research team developed a unique delivery system to solve this issue, thus improving outcomes for lymphoma patients.  Accelerating Promising Cancer Research It is discoveries like these launch medical professionals forward towards finding a cure for cancers. NFCR proudly presents the Salisbury Award Competition, which helps oncology startups accelerate their findings to benefit the cancer community. This program offers a unique opportunity for other promising research deemed high-risk, high-impact ideas, a core value of NFCR’s.  NFCR will host the fourth Salisbury Award Competition later this year, with applications opening in March to academic laboratories advancing promising experimental cancer therapeutic, diagnostic, detection, and vaccine innovations.  Learn more about the Salisbury Award or apply to the program here.   Additional Reads You May Enjoy:  Salisbury Award: Providing […]

The World’s First Oncolytic Virus Drug was Launched to Treat Malignant Brain Tumor GBM

Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumor in adults, with a median survival of only about ten months. Unlike low-grade gliomas (grades I and II), which grow slowly, high-grade gliomas (grades III and IV) grow much faster and can spread to other parts of the brain, resulting in a patient’s death. GBM is the highest grade brain tumor (grade IV) with a very poor prognosis. The standard treatment for GBM includes surgery, radiation, and chemotherapy. However, these limited treatment approaches cannot control the tumor progress, and the rate of brain tumor recurrence is high, resulting in low overall survival (OS) in most patients.   Oncolytic Virus Therapy  Oncolytic virus therapy represents a new promising cancer immunotherapy approach that utilizes genetically modified viruses to infect and kill cancer cells. The viruses are modified to selectively infect and lyse cancer cells through genetic engineering processes while leaving normal cells unharmed. The genetic modification of the viruses also grants them the ability to produce immune-boosting molecules or initiate anti-cancer immunity through multiple mechanisms of the patient’s own immune system.  The First Oncolytic Virus Therapy for GBM  Recently, the world’s first oncolytic virus-based immunotherapy (Teserpaturev) was approved in Japan. Teserpaturev offers a new option for treating GBM and brings new hope to thousands of patients suffering from this malignant brain tumor.  Teserpaturev is a genetically engineered herpes simplex virus type 1 (HSV-1). The uniqueness of this new oncolytic virus-based drug is that it not only has strong killing power to brain tumor cells that the virus entered into, but it is also able to kill the tumor cells that have spread to other parts of the brain. This process happens by inducing systemic antitumor immunity of a patient’s own immune system.  In June 2021, Teserpaturev received a conditional and time-limited marketing approval in Japan to treat malignant glioma based on a Japanese phase 2 clinical trial in patients with GBM. The clinical trial results showed that 92% of patients who received Teserpaturev immunotherapy treatment were still alive after one year. This percent is considerably higher than the typical 15% one-year survival rate in this group of patients receiving standard late-stage brain tumor treatments.  Bottom Line Because Teserpaturev is currently under conditional and time-limited marketing approval in Japan, this novel immunotherapy for GBM is only available at specified hospitals in Japan. We hope international multi-center clinical trials on this innovative drug can take place in the near future. Hopefully, the novel therapy can be made available to GBM patients around the world.  Stay up-to-date with the latest information on new drug development. Receive our monthly e-newsletter and blogs featuring stories of inspiration, support resources, cancer prevention tips, and more; sign up here.  Additional Reads You May Also Enjoy: Treating Brain Cancer: What You Need to Know New Brain Scan Technology Can Improve Tumor Removal GBM AGILE – Changing the Way We Fight Brain Cancer References Daiichi Sankyo introduces Delytact in Japan to treat malignant glioma. com, November 2, 2021.  http://www.pharmabiz.com/NewsDetails.aspx?aid=143694&sid=2 First launch for Daiichi Sankyo’s oncolytic virus Delytact in Japan. Pharmaphorum, November 1, 2021.  https://pharmaphorum.com/news/first-launch-for-daiichi-sankyos-oncolytic-virus-delytact-in-japan/