Massachusetts General Hospital

Boston, MA 
Andrew Werk Cook Professor of Tumor Biology, Harvard Medical School
Director of the Edwin L. Steele Laboratory for Tumor Biology, Massachusetts General Hospital

Research

Dr. Jain has received NFCR funding since 1998. He is a renowned world expert in understanding how changes in the microenvironment surrounding tumors effect the immune system, drug delivery, treatment efficacy and patient survival. Our immune system produces cytotoxic T cells to kill tumor cells. But tumors create molecules called immune checkpoints that weaken T cells’ ability to kill tumors, allowing the tumor cells to escape the T cell attack. The new immunotherapy called immune checkpoint inhibitors — a class of drugs that block the checkpoints — has revolutionized cancer therapy for some tumors but are not effective in the most aggressive brain tumor, glioblastoma or GBM. Dr. Jain’s current work has determined that the resistance to immune checkpoint inhibitor therapy in GBM is due, in part, by the tumor environment.

Dr. Jain discovered the theory that an imbalance of vessel growth in tumors resulted in leaky blood vessels that caused edema, lack of oxygen and immunosuppression. In GBM models, his team discovered the abnormal vessels severely limit the immune system’s cytotoxic T cells to enter and kill tumors. Most importantly, treating GBM models with a factor previously discovered by Dr. Jain to inhibit blood vessel growth, led to a more normalized tumor vasculature and improved outcomes when combined with immune checkpoint blockers. Dr. Jain’s research has tremendous potential to improve treatment outcomes and increase survival in patients diagnosed with glioblastoma. Ultimately, he hopes his research will inform the design of clinical trials of GBM with dual therapy of the factors to normalize the tumor blood vessels with checkpoint blockers combined with standard of care, surgery, radiation and chemotherapy.

Bio

Rakesh Jain, Ph.D., moved from his home in India to the United States in 1972 after receiving a B. Tech in Chemical Engineering from the Indian Institute of Technology. He then attended the University of Delaware, where he completed a M.S. and Ph.D. in chemical engineering. Dr. Jain served on the faculty of Columbia University for two years and spent 14 years at Carnegie Mellon University. Since 1991, Dr. Jain has been the Andrew Werk Cook Professor of Tumor Biology and the Director of the Edwin L. Steele Laboratory for Tumor Biology at Massachusetts General Hospital.

In addition to his fellowship with NFCR, Dr. Jain is an elected member of the National Academy of Sciences, the National Academy of Engineering and the National Academy of Medicine. He is the ninth person ever to be elected to all three U.S. National Academies. He is also a Fellow of the American Association for Cancer Research (AACR) Academy.

Throughout his career, Dr. Jain has also been the recipient of numerous prestigious awards, including the 2012 Science of Oncology Award from the Society of Clinical Oncology and the 2016 National Medal of Science from President of the United States Barack Obama. He received the Medal of Science for developing new ways to manipulate tumors.

Dr. Jain has mentored more than 200 doctoral and postdoctoral fellows in more than a dozen disciplines. He has also collaborated with hundreds of basic scientists in fundamental research and physicians across multiple specialties and the partnerships have resulted in more than 700 publications.

Areas of Focus

Cancer Types

Years of NFCR Funding

1998 – Present

Related Content

Newly Diagnosed Brain Tumor Patients Should Consult Their Doctors Before Starting the Preventive Anti-Epileptic Treatment

NFCR Fellow’s Research Sheds Light on Mechanism for Blood Vessel Formation in Cancer

Almost all living things need oxygen to survive. In human cells, the key to staying healthy is the right balance of oxygen. NFCR fellow Xiang-Lei Yang a professor at Scripps Research Institute has spent much of her career exploring the processes by which tumors sprout new blood vessels when they are oxygen-starved, a process known as angiogenesis. Dr. Xiang-Lei Yang, and NFCR-funded scientist Dr. Paul Schimmel, are worldwide experts in aminoacyl-tRNA synthetases (aaRS). aaRS is a family of enzymes that catalyze the synthesis of proteins from tRNA. While aaRS’s are best known for their role in protein synthesis, Dr. Yang discovered that a particular aaRS, SerRS, also plays a role in inhibiting angiogenesis. Prior angiogenesis research suggests that two genes — c-Myc and HIF-1 — are responsible for promoting blood vessel growth in healthy cells and tumors alike. As such, the turning on and transcription of these genes can promote tumor oxygenation and growth. In particular, c-Myc is one of the most important cancer-causing genes upregulated in many types of cancer. It also controls the gene for the production of VEGF, a blood vessel growth factor. In addition to its role in protein synthesis, SerRS limits blood vessel growth by inhibiting the function of the c-Myc and HIF-1. In the study published in PLOS Biology (December 2020), Yang and her fellow researchers share the discovery that during hypoxia, or oxygen starvation, proteins known as ATM/ATR are activated. The ATM/ATR protein activation “silences” or inhibits SerRS and promotes the formation of new blood vessels. Additionally, in separate studies of mice and human breast tissue, the researchers were able to display that ATM/ATR activation had a blocking effect on SerRS and resulted in reduced tumor size. In researching the role of ATM/ATR activation, and SerRS in breast cancer, Dr. Yang’s team found that the expression of SerRS is positively correlated with a greater rate of survival in breast cancer patients. Also, SerRS is significantly downregulated when metastasis, or cancer spread, occurs. Similar findings have been made in several other cancer types including brain, esophageal, kidney (clear cell), rectal, stomach, and thyroid cancers. These findings suggest that SerRS can inhibit the growth and metastasis of certain cancers and that ATM/ATR activation can counter that inhibition. These discoveries, funded in part by the National Foundation for Cancer Research, are core to our understanding of why and how tumors form new blood vessels and metastasize. As such, these discoveries may lead to novel therapeutic approaches that seek to limit ATM/ATR activation.

New Brain Scan Technology Can Improve Tumor Removal

Any illness or disease that impacts the brain is highly complex. None more so than brain tumors, which affect over 20,000 Americans each year. While surgeons have become more advanced in the removal of brain tumors, experts continue to face extreme challenges in ensuring all cancerous tissues are removed during surgery. That is, until now.  A recent study found a high-intensity focused ultrasound 2.5 times more effective at identifying cancerous tissue than surgeons alone and significantly better than traditional ultrasound. The newly identified ultrasound cancer treatment technique is referred to as shear wave elastography.  Shear wave elastography measures the stiffness and stretch within the tissue, with vibrations moving faster through stiffer tissue. Brain tumors tend to be stiffer than normal brain tissue, allowing the new method to map suspicious areas of particular stiffness. In the study, researchers compared this high-intensity focused ultrasound to the standard ultrasound cancer treatment and a surgeon’s opinion regarding which tissues to remove.  The study used these three different techniques on a total of 26 patients. All of the techniques were compared with gold-standard MRI scans after the surgery – which while effective, are exceptionally time-consuming and expensive.  While the shear wave elastography ultrasound cancer treatment proved to be the most effective with 94% sensitivity (compared to 73% for the standard ultrasound tumor removal and 36% for the surgeon’s opinion), researchers concluded that the shear wave scans may yield more false positives than surgeons.  Ensuring all of a brain tumor is removed without damaging healthy tissue is a major challenge in brain surgery. This new type of scan can greatly increase a surgeon’s confidence that no cancer tissue is left behind in surgery.  The use of this unique ultrasound in cancer treatment makes a significant stride towards improving the health outlook for brain cancer patients. The National Foundation for Cancer Research (NFCR) is also providing new hope in the realm of brain cancer through its partnership with Global Coalition for Adaptive Research (GCAR). GCAR is a nonprofit organization comprised of some of the world’s foremost physicians, clinical researchers and investigators united in expediting the discovery and development of cures for patients with rare and deadly diseases. GCAR is the official sponsor of GBM AGILE, an adaptive platform trial for patients with glioblastoma (GBM) – the most common and deadliest of malignant primary brain tumors. The GBM AGILE has been developed with a revolutionary approach to defeating GBM, with the goal of enabling faster and more efficient testing of new agents and combination therapies, better identification of predictive and prognostic biomarkers and delivery of more effective treatments to all glioblastoma patients. GBM AGILE is an innovative approach for treating brain cancer, providing new hope where little existed before. NFCR continues to fund innovative researchers paving the way to finding new screening methods, treatments, and cures for all cancers, including brain cancer. To learn more about the progress that NFCR-funded scientists are making in the way of brain cancer, visit the NFCR Brain Cancer page.  Additional Reads You May Enjoy: “Pink Drink” to Aid Brain Tumor Treatment Treating Brain Cancer: What You Need to Know GBM AGILE – Changing the Way We Fight Brain Cancer Stay connected with us! […]