Areas of Focus | Genomics - National Foundation for Cancer Research

Genomics

Genomics

What is Genomics?

Genomics – in general – is the study of a complete set of genetic material (DNA), and when it comes to cancer research, studying DNA is crucial. Cancer develops when DNA becomes damaged or changed. Some cancer-causing genetic changes are inherited, while some come from exposure to chemicals (such as those in cigarette smoke), radiation, certain microbes or other environmental factors. Studying cancer genomics involves exploring the differences between cancer cells and normal cells.
There’s a paradigm shift taking place: We’re moving from an organ-focused (type of cancer) approach to a gene-focused approach. This shift is already having a profound effect on the way cancer is treated and allows doctors to provide more individualized options for patients (also known as precision medicine or precision oncology).

Support Breakthroughs in Genomics Cancer Research and Beyond.

Researchers Working On Genomics

Paul Schimmel
Paul Schimmel, Ph.D.
Wei Zhang, Ph.D.
Wei Zhang, Ph.D.
Daniel A. Haber, Ph.D.
Daniel A. Haber, M.D., Ph.D.
Paul Fisher, M.Ph., Ph.D.
Paul Fisher, M.Ph., Ph.D.
Daniel Von Hoff, M.D
Daniel Von Hoff, M.D
James P. Basilion, Ph.D.
James P. Basilion, Ph.D.
Danny R. Welch, Ph.D.
Danny R. Welch, Ph.D.
Ronald A. DePinho, M.D.
Ronald A. DePinho, M.D.
Cesare Spadoni, Ph.D.
Cesare Spadoni, Ph.D.
Alice T. Shaw, M.D., Ph.D.
Alice T. Shaw, M.D., Ph.D.
Laurence Hurley, Ph.D.
Laurence Hurley, Ph.D.

Related Content

What is Genomic Sequencing, and Who Can Benefit?

There’s a paradigm shift taking place in the world of cancer treatment. Experts are moving away from an organ-focused approach to treatment, like using radiation to treat the specific area affected by cancer. Instead, they’re looking at genomic sequencing.  Genomics is the branch of molecular biology concerned with the structure, function, evolution, and mapping of an individual’s genes. Regarding cancer, genomics allows experts to examine DNA to determine an individual’s risk of cancer through genomic sequencing. This means that oncologists can provide more individualized treatment options for patients using precision medicine.  How can cancer risk be determined through genomic sequencing? Parents pass along many traits to their children, such as hair and eye color. Unfortunately, the risk of developing certain types of cancer can also pass along. By examining DNA, experts can identify certain changes in a person’s DNA known for increasing their risk of developing various types of cancer. However, not all cancers pass genetically. In fact, only five to ten percent of all cancers are believed to have an inherited gene mutation. It is important to note that no test can provide exact answers about a person’s inherited cancer risk. Genetic testing can tell whether a specific genetic mutation exists in the DNA. However, it cannot tell whether an individual will develop the disease associated with that mutation later in life or not. What is the benefit of genomic sequencing? Genomic sequencing cannot prevent a cancer diagnosis but can help identify cancer-related DNA mutations. This means an individual can implement precautionary measures. These measures could include making healthy lifestyle changes, such as exercising regularly, ceasing smoking, or reducing alcohol consumption. Depending on the type of mutation, medications may be available to reduce one’s risk of developing cancer. Similarly, genomic sequencing may highlight the option of surgery to remove an organ or gland to prevent cancer from forming or promote undergoing more health screenings regularly.  Who should utilize genomic sequencing? Experts typically only recommend genetic sequencing for patients whose families have a history of certain cancers or patterns of cancer. Doctors may order genetic testing for people that have: Multiple first-degree relatives with cancer diagnoses; Numerous relatives who have been diagnosed with the same cancer on one side of the family; A family history of cancers linked to a single gene mutation, such as breast cancer, ovarian cancer, or pancreatic cancer; Family member(s) who has been diagnosed with more than one type of cancer; Family member(s) who has been diagnosed with cancer at a younger age than typically seen for that cancer, such as colon cancer; Close relatives who have been diagnosed with cancers linked to rare hereditary cancer syndromes, such as Hereditary Breast & Ovarian Cancer Syndrome (HBOC), Cowden Syndrome, or Lynch Syndrome; or Family member(s) who has been diagnosed with rare cancer, such as breast cancer in a male. Can we expect more research in genomic sequencing?  National Foundation for Cancer Research (NFCR) is committed to advancing genomic research and its potential to be the future of developing treatment plans for cancer patients. As such, NFCR funds a dozen world-renowned researchers paving the way in genomic research. […]

Genetic Testing: Learning More About Your Cancer Risk

Genetic testing can be an important tool in helping patients learn about their inherited cancer risk, but the results are not always as clear as patients might expect. Just as traits such as hair color and eye color can be passed down from parents to their children, so too can the risk for developing certain types of cancer. Scientists know that certain inherited gene mutations — small changes in a person’s DNA — can increase a person’s risk for developing diseases such as breast cancer, ovarian cancer, and colon cancer. Genetic testing examines a person’s DNA to determine if such mutations are present, helping patients better understand their cancer risk and, in some cases, allowing them to take charge of their health before receiving a devastating diagnosis. Understanding the Basics of Genetic Testing Only five to 10 percent of all cancers are believed to be tied to an inherited gene mutation.1 Genetic testing can help determine whether an individual has inherited a specific gene mutation (or mutations) that put him or her at higher risk for developing certain cancers. Most genetic tests require a small blood sample from the patient, but some tests can be performed using urine, saliva, or a cheek swab. The sample is sent to a special laboratory and results are usually provided to the patient’s doctor or genetic counselor within several weeks.2 Genetic testing can return one or a combination of the following results: Positive: The laboratory identified a genetic mutation that is associated with an inherited cancer risk.2 Negative: The laboratory did not find the specific genetic mutation (or mutations) that the test was designed to detect.2 Inconclusive: The laboratory was not able to determine whether a specific genetic mutation (or mutations) was present in the sample provided.2 Variance of Uncertain Significance: The laboratory identified a genetic mutation that has not been previously associated with cancer.2 No test can provide exact answers about a person’s inherited cancer risk. Genetic testing can tell you whether a specific genetic mutation is present in your DNA, but it cannot tell you for certain that you will develop the disease associated with that mutation later in life.3 Knowing Your Cancer Risk: Is Genetic Testing Right for You? Doctors often only recommend genetic testing for patients whose families have a history of certain cancers or patterns of cancer. According to the American Cancer Society, people who meet the following criteria might consider genetic testing: Cancer diagnoses in multiple first-degree relatives, including parents, siblings, or children1 Numerous relatives on one side of the family who have been diagnosed with the same cancer1 Family history of cancers linked to a single gene mutation, such as breast cancer, ovarian cancer, or pancreatic cancer1 Family member(s) who has been diagnosed with more than one type of cancer1 Family member(s) who has been diagnosed with cancer at a younger age than typically seen for that cancer, such as colon cancer1 Close relatives who have been diagnosed with cancers linked to rare hereditary cancer syndromes, such as Hereditary Breast & Ovarian Cancer Syndrome (HBOC), Cowden Syndrome, or Lynch Syndrome1 Family member(s) who has been diagnosed with […]

Wei Zhang: The Art of Precision

“The essence of precision medicine, in particular precision oncology, is to make cancer management more precise based on genomic mapping and molecular characterization of the unique tumors for each patient,” says Dr. Wei Zhang. “The cancer management that needs to be precision include diagnosis, prognosis, treatment plan, treatment monitoring, and genetic counseling.” Precision medicine, and by extension, oncology, is the buzzword of the moment among doctors and researchers, and it is more than just spin or a fad. With regards to cancer, and as our understanding of the disease has increased, the idea of a one-drug-cures-all panacea is now widely considered obsolete (however much of a holy grail such would be). Cancer, even the same type, varies at a genetic level from patient to patient. The therapies that work with “Patient A” may not at all with “Patient B,” due at least in part in the natural genetic difference that exists among practically all living things. Zhang admits the field is still in its infancy, the promise it holds is vast: with the rise of genomics, scientists can untangle the genetic knot of cancer, tailoring customized treatment regimens unique to a person, start to finish. Trailblazing cancer research for the last 20 years, Zhang has been witness to the evolution of cancer treatment, at one point co-directing a Genome Data Analysis Center under the National Cancer Institute-funded Cancer Genome Atlas program. He also served as Director of the Cancer Systems Biology Center funded by the National Foundation for Cancer Research for several years when at the MD Anderson Cancer Center. In 2016, he was recruited to the Wake Forest Comprehensive Cancer Center located in Winston Salem, North Carolina to lead the Center for Cancer Genomics and Precision Oncology and takes a direct role in the development of targeted therapies. Moreover, Zhang, who is also an NFCR Fellow, instituted sorely-needed diversity in cancer research. While cancer is not particularly picky, some forms of it tend to show up more in specific ethnicities that, historically, were overlooked, often with great detriment: African-Americans have the highest death rate and shortest survival of any racial and ethnic group in the USA for most cancers. “Our precision medicine/oncology considers health disparities a priority issue of our cancer center,” Zhang explains. “In our program, 14 percent of all cancer patients who are enrolled in our precision oncology trials are African-American patients, a percentage that is much higher than most cancer centers in the country. We have taken on a leading role in our effort in understanding the unique genomics features for cancer of African-American ancestry.” For all its promise, Zhang stressed that precision medicine, and oncology, is still in its infancy. The single most rate-limiting challenge is the effective matching of genomic mutations with corresponding drugs. That being said, precision medicine/oncology is for everyone involved in cancer management. That includes patients and family members, doctors, researchers, pharmaceutical companies, funding agencies and insurance industries.  Decisions have to be made through better research and better development of targeted therapeutics. Zhang is optimistic. “The efficacy will continue to improve with the effort of national consortium such as Precision Medicine […]